• Home
  • Tools dropdown img
    • Spreadsheet Charts

      • ChartExpo for Google Sheets
      • ChartExpo for Microsoft Excel
    • Power BI Charts

      • Power BI Custom Visuals by ChartExpo
    • Word Cloud

  • Charts dropdown img
    • Chart Category

      • Bar Charts
      • Circle Graphs
      • Column Charts
      • Combo Charts
      • Comparison Charts
      • Line Graphs
      • PPC Charts
      • Sentiment Analysis Charts
      • Survey Charts
    • Chart Type

      • Box and Whisker Plot
      • Clustered Bar Chart
      • Clustered Column Chart
      • Comparison Bar Chart
      • Control Chart
      • CSAT Survey Bar Chart
      • CSAT Survey Chart
      • Dot Plot Chart
      • Double Bar Graph
      • Funnel Chart
      • Gauge Chart
      • Likert Scale Chart
      • Matrix Chart
      • Multi Axis Line Chart
      • Overlapping Bar Chart
      • Pareto Chart
      • Radar Chart
      • Radial Bar Chart
      • Sankey Diagram
      • Scatter Plot Chart
      • Slope Chart
      • Sunburst Chart
      • Tornado Chart
      • Waterfall Chart
      • Word Cloud
    • Google Sheets
      Microsoft Excel
  • Services
  • Pricing
  • Contact us
  • Blog
  • Support dropdown img
      • Gallery
      • Videos
      • Contact us
      • FAQs
      • Resources
    • Please feel free to contact us

      atsupport@chartexpo.com

Categories
All Data Visualizations Data Analytics Surveys
Add-ons/
  • Google Sheets
  • Microsoft Excel
  • Power BI
All Data Visualizations Data Analytics Surveys
Add-ons
  • Google Sheets
  • Microsoft Excel
  • Power BI

We use cookies

This website uses cookies to provide better user experience and user's session management.
By continuing visiting this website you consent the use of these cookies.

Ok

ChartExpo Survey



Home > Blog > Data Visualization

Best Types of Charts and Graphs for Data Visualization

Raw data doesn’t tell stories. It sits there like puzzle pieces waiting for assembly. Types of charts and graphs act as the assembly instructions that transform numbers into narratives your audience can grasp instantly.

types of charts and graphs

Picking the right chart isn’t about aesthetics. It’s about matching your analytical intent to visual form. Different graph types excel at different tasks, whether comparing magnitudes, tracking changes, or revealing hidden correlations.

Mastering chart types means never forcing viewers to decode what should be obvious. This guide covers the visualization formats that matter, when each one works best, and how to sidestep the pitfalls that muddy your message.

Table of Content:

  • Different Types of Charts and Graphs
    • The Foundational Charts
      • Clustered Stacked Bar Chart
      • Likert Scale Chart
      • CSAT Score Stacked Column Chart
      • Progress Circle Chart
      • Gauge Chart
    • For Comparing Values
      • Comparison Bar Chart
      • Pareto Bar Chart
      • Mosaic Plot
      • Slope Chart
      • Horizontal Waterfall Chart
    • For Exploring Relationships & Correlations
      • Sankey Chart
      • Stacked Area Chart
      • Sunburst Chart
    • For Showing Trends Over Time
      • Multi-Axis Line Chart
      • Sentiment Trend Chart
      • Multi Series Line Chart
    • For Distribution
      • Histogram
      • Box and Whisker Plot
      • Grouped Dot plot
    • For Geographic Insights
      • World Map Chart
      • Heatmap Chart
  • Other Popular Types of Charts and Graphs
      • Tornado Chart
      • Matrix Chart
      • Control Chart
      • Clustered Column Chart
      • Pyramid Chart
      • Circular Org Chart
      • Word Cloud
      • Scatter Plot
  • How to Create Different Types of Charts and Graphs?
  • How to Choose the Right Types of Charts and Graphs for Data Visualization?
  • Wrap Up

Different Types of Charts and Graphs

Modern visualization libraries offer dozens of chart formats, each engineered to address specific analytical challenges. Some formats shine when spotlighting differences between categories. Others track momentum across time periods or expose how variables interact.

You’ll encounter visuals built for distribution analysis, location-based patterns, and workflow documentation. Recognizing what each chart type delivers lets you bypass trial and error when building dashboards or crafting data presentations.

From standard bar graphs to specialized diagrams, understanding the complete toolkit ensures that types of data visualization charts translate into decision velocity.

The Foundational Charts

1. Clustered Stacked Bar Chart

A Clustered Stacked Bar Chart layers category breakdowns inside grouped bars to reveal both aggregate totals and compositional details. Here, it demonstrates product categories split by sub-category contributions, showing Electronics, Home Goods, and Fashion sales alongside their profit drivers.

Clustered Stacked Bar Chart

When to use Clustered Stacked Bar Charts?

Deploy this format when comparing totals across groups while exposing internal composition. Typical applications include revenue versus profit splits by department, regional performance segmented by customer type, or spending categories broken into line-item detail.

Best practices for Clustered Stacked Bar Charts

  • Maintain color consistency for matching sub-categories across all cluster groups.
  • Cap stacked layers at four to preserve legibility.
  • Clearly label totals and key values to avoid confusion.

2. Likert Scale Chart

A Likert Scale Chart maps opinion distribution across structured response tiers to quantify sentiment intensity. This example captures customer reactions to usability, quality, value, and delivery speed, exposing where satisfaction concentrates.

Likert Scale Chart

When to use Likert Scale Charts?

Apply Likert formats when measuring opinions across multiple dimensions with consistent rating scales. Common scenarios include feedback surveys, workplace satisfaction assessments, product perception studies, and service evaluation forms.

Best Practices for Likert Scale Charts

  • Anchor every statement with identical response options.
  • Employ diverging color schemes to separate favorable from unfavorable zones.
  • Simplify wording to eliminate interpretation ambiguity.

3. CSAT Score Stacked Column Chart

A CSAT Score Stacked Column Chart stacks satisfaction segments to visualize how response categories build the Net Promoter Score over time. Here, it tracks detractors, passives, and promoters month by month to reveal sentiment trajectory.

CSAT Score Stacked Column Chart

When to use CSAT Score Stacked Column Charts?

Choose stacked columns for satisfaction tracking when you need temporal context. They’re built for monitoring customer experience metrics across reporting periods and identifying when shifts occur.

Best Practices for CSAT Score Stacked Column Charts

  • Lock in standard colors for detractor, passive, and promoter segments.
  • Space time intervals uniformly to avoid distorting trend perception.
  • Display percentage breakdowns to simplify interpretation.

4. Progress Circle Chart

A Progress Circle Chart employs radial fills to communicate goal attainment at a glance. This visualization tracks social media KPIs engagement rate, likes, comments, and conversions with visual completion indicators.

Progress Circle Chart

When to use Progress Circle Charts?

Progress circles belong on dashboards where rapid status assessment matters. They’re designed for single-metric tracking against targets when you prioritize visual scanning speed over detailed analysis.

Best Practices for Progress Circle Charts

  • Display one primary metric per circle for instant comprehension.
  • Use high-contrast fills to distinguish achieved from remaining portions.
  • Always show numerical labels alongside visual indicators.

5. Gauge Chart

A Gauge Chart mimics dashboard instrumentation to plot performance against benchmarks. This example shows ROI percentages for marketing, product development, and customer retention investments using dial-based indicators.

Gauge Chart

When to use Gauge Charts?

Gauges work when you’re comparing current values to predefined thresholds. They’re standard for KPI monitoring, investment return tracking, and real-time operational metrics where quick threshold assessment drives action.

Best Practices for Gauge Charts

  • Define threshold zones that distinguish strong, acceptable, and weak performance clearly.
  • Restrict gauge quantity to prevent dashboard overcrowding.
  • Present precise values beside dial positions for reference.

For Comparing Values

6. Comparison Bar Chart

A Comparison Bar Chart arranges categories horizontally to spotlight magnitude differences instantly. Here, office supply products are ranked by performance metrics, making relative strengths immediately visible across items like shredders, organizers, notebooks, and markers.

Comparison Bar Chart

When to use Comparison Bar Charts?

Deploy bar comparisons when showing how multiple entities stack up against each other. They’re built for product rankings, sales leaderboards, and category performance assessments where hierarchy matters.

Best Practices for Comparison Bar Charts

  • Maintain uniform axis scaling to preserve comparison accuracy.
  • Sequence bars by value to emphasize ranking patterns.
  • Minimize color variety and maximize label clarity.

7. Pareto Bar Chart

A Pareto Bar Chart pairs descending bars with a cumulative percentage line to isolate high-impact contributors. This format reveals which few categories generate most of the total value, helping prioritize where effort yields maximum return.

Pareto Bar Chart

When to use Pareto Bar Charts?

Apply Pareto analysis when hunting for vital few versus trivial many patterns. Perfect for quality troubleshooting, resource allocation, and focusing improvement initiatives on leverage points.

Best Practices for Pareto Bar Charts

  • Rank bars from largest to smallest to expose concentration effects.
  • Plot the cumulative contribution prominently to show where diminishing returns begin.
  • Trim category count to spotlight true drivers.

8. Mosaic Plot

A Mosaic Plot partitions space proportionally to display multivariate categorical relationships. Here, goal completion, revenue contribution, and lead conversion are compared across categories through sized rectangles that reflect their relative weight.

Mosaic Plot

When to use a Mosaic Plot?

Mosaics excel at revealing how multiple categorical dimensions intersect and compare proportionally. They’re suited for complex datasets where you’re examining contribution patterns across several attributes simultaneously.

Best Practices for Mosaic Plot

  • Restrict category combinations to keep visual parsing manageable.
  • Employ distinct hues to separate segments without confusion.
  • Provide legends or annotations to decode proportional relationships.

9. Slope Chart

A Slope Chart connects paired data points with angled lines to emphasize a change in direction. This example maps SEO traffic ranking shifts from the previous to the current period across locations, making gains and losses immediately apparent.

Slope Chart

When to use Slope Charts?

Use slope formats when comparing two time snapshots and highlighting which items rose or fell. Perfect for before-and-after comparisons, ranking movements, and performance shift documentation.

Best Practices for Slope Charts

  • Control the line quantity to avoid crossing tangles.
  • Anchor values at both endpoints with readable labels.
  • Maintain color coding to simplify category tracking.

10. Horizontal Waterfall Chart

A Horizontal Waterfall Chart decomposes totals by showing incremental additions and subtractions horizontally. This visualization walks through quarterly budget changes, funding, costs, and adjustments to explain how starting amounts become final balances.

Horizontal Waterfall Chart

When to use Horizontal Waterfall Charts?

Deploy waterfalls when explaining sequential contributions to a cumulative outcome. They’re essential for variance analysis, budget walkthroughs, and profit bridge construction where step-by-step logic matters.

Best Practices for Horizontal Waterfall Charts

  • Color-code additions versus subtractions for instant direction recognition.
  • Annotate each increment to clarify its contribution magnitude.
  • Emphasize opening and closing totals for context.

For Exploring Relationships & Correlations

11. Sankey Chart

A Sankey Chart renders flows between stages using variable-width bands that communicate volume. Here, task movement from categories through roles and priority levels to final status is mapped, exposing workflow distribution and chokepoints visually.

Sankey Chart

When to use Sankey Charts?

Sankeys shine when tracing quantities through multi-stage processes. They’re ideal for conversion funnels, resource allocation mapping, and identifying where volume accumulates or dissipates.

Best Practices for Sankey Charts

  • Constrain node and flow counts to prevent visual overload.
  • Ensure flow width scales accurately with underlying values.
  • Label connections clearly and use consistent coloring schemes.

12. Stacked Area Chart

A Stacked Area Chart layers data series to show both individual trajectories and combined totals across time. This chart illustrates monthly traffic by source, revealing contribution patterns and aggregate growth dynamics channel by channel.

Stacked Area Chart

When to use Stacked Area Charts?

Choose stacked areas when demonstrating how parts accumulate into wholes over time. They’re designed to show compositional evolution and changes in relative contributions across reporting periods.

Best Practices for Stacked Area Charts

  • Cap layer count to maintain readability across the visualization.
  • Pick distinguishable color palettes for each stacked component.
  • Sequence layers logically to facilitate pattern recognition.

13. Sunburst Chart

A Sunburst Chart displays hierarchical structures using nested rings where each ring represents a deeper level. Here, admissions workflow processes and statuses branch outward from the center, making organizational relationships explorable layer by layer.

Sunburst Chart

When to use Sunburst Charts?

Sunbursts work for navigating hierarchical data with multiple nested levels. They’re suited when you want interactive exploration of part-to-whole relationships within organizational or categorical structures.

Best Practices for Sunburst Charts

  • Limit hierarchy depth to avoid overwhelming viewers with complexity.
  • Apply coherent color families for related segments.
  • Add hover tooltips or labels to aid interpretation at each level.

For Showing Trends Over Time

14. Multi-Axis Line Chart

A Multi Axis Line Chart plots metrics with different scales on separate vertical axes within one frame. This example compares forecasted demand, actual demand, average price, and revenue across months to expose relationships between disparate measures.

Multi-Axis Line Chart

When to use Multi-axis Line Charts?

Apply dual-axis charts when comparing metrics that use incompatible units or scales during the same period. They reveal correlations and trend alignments that single-axis visuals can’t capture.

Best Practices for Multi-Axis Line Charts

  • Cap axis count at two to prevent cognitive overload.
  • Mark each axis clearly with corresponding metric names.
  • Differentiate series through line styling or color coding.

15. Sentiment Trend Chart

A Sentiment Trend Chart combines bar volumes with trend lines to monitor attitude shifts over time. Here, completed versus delayed tasks are tracked monthly with an overlay that highlights overall performance sentiment evolution.

Sentiment Trend Chart

When to use Sentiment Trend Charts?

Deploy sentiment charts when tracking attitudinal or qualitative shifts across periods. They’re built for monitoring feedback trends, engagement patterns, and operational outcome improvements.

Best Practices for Sentiment Trend Charts

  • Standardize sentiment scales to enable accurate period comparisons.
  • Use contrasting colors to separate positive from negative dimensions.
  • Annotate significant inflection points to draw attention to important changes.

16. Multi Series Line Chart

A Multi Series Line Chart overlays related metrics on shared axes to compare temporal patterns. This visualization tracks planned, expected, and actual story points across sprints, making divergence between estimates and reality visible.

Multi Series Line Chart

When to use Multi-Series Line Charts?

Use multi-series lines when comparing trend behaviors of related metrics across identical timeframes. They’re perfect for spotting synchronization, gaps, or alignment between planning and execution.

Best Practices for Multi-Series Line Charts

  • Assign unique colors or patterns to each series for quick identification.
  • Keep the series count reasonable to avoid visual clutter.
  • Apply direct labeling or clear legends to eliminate guesswork.

For Distribution

17. Histogram

A Histogram bins continuous data into intervals and plots frequencies to reveal the distribution shape. This example shows sales amount spread across value ranges, exposing concentration zones and frequency patterns within the dataset.

Histogram

When to use Histograms?

Histograms belong wherever you’re analyzing continuous variable distribution, spread, and frequency. They’re essential for understanding data characteristics, identifying clustering, and spotting unusual observations.

Best Practices for Histograms

  • Select bin widths that accurately capture distribution characteristics.
  • Label axes comprehensively to show ranges and count magnitudes.
  • Avoid excessive binning that obscures meaningful patterns.

18. Box and Whisker Plot

A Box and Whisker Plot employs columnar box plots to compare data distributions across categories. Here, quarterly financial metrics, marketing spend, operational cost, and product revenue are displayed, showing spread, central tendency, and outliers.

Box and Whisker Plot

When to use a Box and Whisker Plot?

Box plots excel at comparing distributions, identifying variation ranges, and flagging anomalous data points across multiple categories or groups.

Best Practices for Box and Whisker Plot

  • Apply consistent scaling across boxes to ensure valid comparisons.
  • Highlight medians and outliers prominently for interpretation.
  • Limit category count to preserve chart readability.

19. Grouped Dot plot

A Grouped Dot Plot arranges individual observations by category to reveal distribution differences. This chart presents cholesterol levels for different treatment modalities, showing variation and clustering patterns within each therapeutic group.

Grouped Dot plot

When to use a Grouped Dot Plot?

Dot plots work when comparing individual-level distributions across categories, particularly with datasets small enough that plotting every point remains practical.

Best practices for Grouped Dot Plot

  • Apply spacing or jittering techniques to prevent point overlap.
  • Label categories distinctly for straightforward comparison.
  • Constrain dataset size to maintain visual interpretability.

For Geographic Insights

20. World Map Chart

A Word Map Chart colors geographic regions by value intensity to display location-based patterns. Here, global internet usage by country is mapped, revealing where online populations concentrate most heavily worldwide.

World Map Chart

When to use Word Map Charts?

Geographic maps belong in analyses focused on regional patterns, spatial concentrations, or location-driven variations in your metrics.

Best practices for Word Map Charts

  • Choose color gradients that represent value intensity intuitively.
  • Resist label overcrowding that obscures the map itself.
  • Verify geographic boundary accuracy and data alignment.

21. Heatmap Chart

A Heatmap Chart applies color saturation to encode values, making patterns visible instantly. This example highlights healthcare factor impacts across SWOT categories, helping identify critical strengths, weaknesses, opportunities, and threats through color density.

Heatmap Chart

When to use Heatmap Charts?

Heatmaps work when rapid pattern identification matters more than precise value reading. They’re built for correlation matrices, time-intensity analysis, and large-scale data comparison through color variation.

Best Practices for Heatmap Charts

  • Select intuitive color scales that communicate intensity naturally.
  • Provide legends or annotations to explain color meanings.
  • Balance the detail level to prevent pattern obscuration.

Other Popular Types of Charts and Graphs

22. Tornado Chart

  • Evaluates variable impact on outcomes through horizontal bars.
  • Standard tool for sensitivity and risk modeling.

23. Matrix Chart

  • Organizes relationships between dimensions in a grid format.
  • Useful for performance mapping and correlation spotting.

24. Control Chart

  • Tracks process behavior over time using statistical limits.
  • Identifies variation sources and stability issues.

25. Clustered Column Chart

  • Group vertical columns for category-by-category comparison.
  • Makes side-by-side differences and trends obvious.

26. Pyramid Chart

  • Represents hierarchical or funnel structures visually.
  • Common for demographic and population analysis.

27. Circular Org Chart

  • Maps organizational hierarchies in radial layouts.
  • Improves reporting structure visualization without linear constraints.

28. Word Cloud

  • Condenses text corpora into visual keyword summaries.
  • Makes dominant themes immediately recognizable.

29. Scatter Plot

  • Plots two numerical variables to expose relationships.
  • Reveals correlations, outliers, and distribution patterns.

How to Create Different Types of Charts and Graphs?

Building effective types of charts and graphs demands clear intent, clean data, and appropriate tooling. Modern platforms provide ready-made templates for advanced chart types without coding requirements. ChartExpo distinguishes itself by enabling you to create complex visualizations directly in Excel and Google Sheets.

Why use ChartExpo?

  • Accommodates extensive chart variety, enabling the creation of sophisticated types of data visualization charts.
  • Works natively with Excel and Google Sheets to convert data into polished professional visuals without programming.
  • Provides a 7-day trial period and a monthly subscription at $10.

Example:

Consider this sample data for a Scatter Plot.

Campaign Category Channel Type Website Visits Purchases
Brand Awareness Social Media 3,200 240
Brand Awareness Display Ads 4,800 520
Lead Generation Email 6,100 410
Lead Generation Paid Search 7,200 890
Product Launch Influencer 8,400 1020
Product Launch Organic Search 9,100 780
Retargeting Email 9800 1150
Retargeting Paid Search 5600 980
Seasonal Promo Social Media 4300 680
Seasonal Promo Display Ads 7600 320
  1. To get started with ChartExpo, install ChartExpo in Google Sheets.
  2. Go to Extensions > Charts, Graphs & Visualizations by ChartExpo > Open.
Create Types of Charts 1
  1. Once ChartExpo is installed in Google Sheets, click on the “Add new chart” button.
Create Types of Charts 2
  1. Once it loads, scroll through the charts list to locate and choose the “Scatter Plot Chart”.
Create Types of Charts 3
  1. Then, select your worksheet and confirm the data range. Your data is automatically mapped. Click the Create chart button to complete the process.
Create Types of Charts 4
  1. If you want to customize your chart, select the ‘Edit Chart’ option and design it to your specifications.
Create Types of Charts 5
  1. To change the chart’s title, select the pencil icon on the header. Then, enter the text you want and select “Apply”.
Create Types of Charts 6
  1. Click on the Legend Properties pen to change the color of the circle.
Create Types of Charts 7
  1. You can enable quadrant from Chart Settings.
Create Types of Charts 8
  1. When you are done with all the changes, click the “Save” button to save them.
Create Types of Charts 9
  1. The Final look and feel of the Scatter Plot Chart is shown below.
Create Types of Charts 10

Key Insights

  • Influencer and Organic Search channels exceed benchmarks in both traffic and conversion metrics.
  • Paid Search demonstrates exceptional conversion efficiency despite lower visitor volumes.
  • Social Media and Display Ads lag on both dimensions, signaling improvement opportunities.

How to Choose the Right Types of Charts and Graphs for Data Visualization?

Selecting appropriate types of charts and graphs ensures communication clarity and drives action.

  • Clarify your objective: Determine what story or conclusion your data needs to convey.
  • Analyze your data composition: Recognize whether you’re working with categories, numbers, hierarchies, or time series.
  • Match to audience sophistication: Pick formats aligned with viewer familiarity and interpretation ability.
  • Prioritize simplicity: Eliminate extraneous elements that dilute core messages.
  • Implement visualization standards: Maintain consistent axes, annotations, and color conventions.
  • Apply interactivity purposefully: Add dynamic features only when they deepen insight discovery.

Thoughtfully chosen graph types transform data into compelling narratives, boost understanding, and enable decisive action.

FAQs

What are the five basic types of charts?

Bar Charts, Line Charts, Pie Charts, Scatter Plots, and Area Charts represent the foundational visualization formats. These chart types underpin most analytical displays across reporting environments and dashboard applications.

What are the most commonly used charts?

Bar Charts, Line Charts, Pie Charts, Heatmaps, Histograms, Box and Whisker Charts, and Scatter Plots see frequent deployment because they communicate comparisons, trajectories, proportions, and relationships effectively across diverse graph types.

How do I choose between different types of charts and graphs?

Base chart selection on data structure, analytical intent, and viewer context. Understanding when different graph types apply guarantees clarity, precision, and persuasive storytelling in data visualization.

Wrap Up

Choosing among types of charts and graphs starts with your analytical goal. Use bars and columns to compare categories, lines to show change over time, and histograms or box plots to describe distributions.

If you need to show parts of a whole, stacked bars or area charts can help, while a Pareto chart highlights the “vital few” contributors. For relationships, scatter plots or Sankey diagrams reveal correlations and flows, and maps or heatmaps surface geographic or intensity patterns.

Keep labels readable, limit colors, and match the chart to the audience’s questions. Tools like Excel or Google Sheets can build types of data visualization charts quickly when your data is clean and consistently structured.

How much did you enjoy this article?

PBIAd1
Start Free Trial!
121143

Related articles

next previous
Data Analytics10 min read

Booking Dashboard: Charts for Booking Insights

Learn how a Booking Dashboard centralizes reservations, tracks KPIs, and improves forecasting. How to create and analyze booking dashboards in Power BI.

Data Analytics11 min read

Growth Metrics: Growth Insights Made Visual

Growth metrics measure performance and growth. This blog shows key KPIs and tools to help you track progress and make smarter decisions.

Data Analytics11 min read

Renovation Budgeting: A Visual Approach

Learn how to use renovation budgeting to plan and track your home project. This guide shows tips, tools, and visuals to control costs and avoid overspending.

Data Analytics8 min read

What is ROI in Business: ROI Insights Made Simple

Understand ROI in Business, how to calculate it, analyze returns, and use real examples to make smarter, data-driven investment decisions.

Data Analytics9 min read

Healthcare Datasets: Step-by-Step Guide for Insights

Learn what datasets for healthcare are, why they matter, real-world examples, and how to analyze medical data effectively with Power BI and advanced visuals.

ChartExpo logo

Turn Data into Visual
Stories

CHARTEXPO

  • Home
  • Gallery
  • Videos
  • Services
  • Pricing
  • Contact us
  • FAQs
  • Privacy policy
  • Terms of Service
  • Sitemap

TOOLS

  • ChartExpo for Google Sheets
  • ChartExpo for Microsoft Excel
  • Power BI Custom Visuals by ChartExpo
  • Word Cloud

CATEGORIES

  • Bar Charts
  • Circle Graphs
  • Column Charts
  • Combo Charts
  • Comparison Charts
  • Line Graphs
  • PPC Charts
  • Sentiment Analysis Charts
  • Survey Charts

TOP CHARTS

  • Sankey Diagram
  • Likert Scale Chart
  • Comparison Bar Chart
  • Pareto Chart
  • Funnel Chart
  • Gauge Chart
  • Radar Chart
  • Radial Bar Chart
  • Sunburst Chart
  • see more
  • Scatter Plot Chart
  • CSAT Survey Bar Chart
  • CSAT Survey Chart
  • Dot Plot Chart
  • Double Bar Graph
  • Matrix Chart
  • Multi Axis Line Chart
  • Overlapping Bar Chart
  • Control Chart
  • Slope Chart
  • Clustered Bar Chart
  • Clustered Column Chart
  • Box and Whisker Plot
  • Tornado Chart
  • Waterfall Chart
  • Word Cloud
  • see less

RESOURCES

  • Blog
  • Resources
  • YouTube
SIGN UP FOR UPDATES

We wouldn't dream of spamming you or selling your info.

© 2026 ChartExpo, all rights reserved.